Rabu, 27 Oktober 2010
Neraca massa reaksi orde 2 pada reaktor fixed bed multi tube
Reaksi 1 CO + 2H2 → CH3OH
Reaksi 2 CO2 + 3H2 → CH3OH + H20
Konversi reaksi 1 = 99%
Konversi reaksi 2 = 68.75%
Komposisi gas sintetis (Kirk Ortmer)
Komposisi BM % berat masuk reaktor Kg/J
H2 2 74 148
CO 28 15 420
CO2 44 8 352
CH4 16 3 48
H2O 18 0 0
CH3OH 32 0 0
Total 100 968
Reaksi 1 C O + 2H2 ---> CH3OH
A B C
Konversi 1 = X1
Co sisa = n.Ao.(1 - X1)
= 0.15Kg mol/J
= 4.2Kg/j (*BM)
H2 bereaksi = 2nAo.X1
= 29.7Kg mol/J
= 59.4Kg/j (*BM)
CH3OH (tbtk) = n.Ao.X1
= 14.85 Kg mol/J
= 475.2 Kg/j (*BM)
Reaksi 2 C O 2 + 3 H 2 ---->CH3OH + H20
D B C E
Konversi 2 = X2
Co2 sisa = n.Do.(1 - X2)
= 2.5 Kg mol/J
= 110 Kg/j (*BM)
H2 bereaksi = 3.nDo. X2
=16.5 Kg mol/J
= 33 Kg/j (*BM)
CH3OH (tbtk) = n.Do.X2
= 5.5 Kg mol/J
= 176 Kg/j (*BM)
H20 (tbtk) = n.Do.X2
= 5.5 Kg mol/J
= 99 Kg/j (*BM)
Total H2 Yang bereaksi = H2 reaksi1+ H2 reaksi2
= 29.7 16.5
= 46.2 Kg mol/jam
H2 sisa = H2 masuk - ( H2 reaksi1 H2 reaksi 2)
= 74 - ( 29,7 19,8 )
= 27.8 Kg mol/J
= 55.6 Kg/j (*BM)
Total CH3OH = CH3OH (r 1) + CH3OH (r 2)
= 14.85 5.5
= 20.35 Kg mol/J
= 651.2 Kg/j (*BM)
Komposisi keluar reaktor
Komposisi BM %Berat Keluar reaktor Kg/J
H2 2 27.8 55.6
CO 28 0.15 4.2
CO2 44 2.5 110
CH4 16 3 48
CH3OH 32 20.35 651.2
H2O 18 5.5 99
Total 968
% CH3OH yang dihasilkan = 86.8
perhitungan reaktor fixed bed multi tube menggunakan quic basic
Contoh perhitungan reaktor fixed bed multi tube menggunakan quic basic.
persamaan reaksi :
1. CO + 2H2 → CH3OH
2. CO2 + 3H2 → CH3OH + H20
T = 200 c
X1 = 99%
X2 = 66,75%
nilai di atas di dapat dari perhitungan,
lihat neraca massa reaksi orde 2 pada reaktor fixed bed multi tube
= CLS ↑
│ PRINT TAB(5); "=========================================
│ PRINT TAB(5); " Perhitungan Reaktor Fixed Bed Multitube"
│ PRINT TAB(5); " Oleh : Herry Widyawarman"
│ PRINT TAB(5); " NIM :*********"
│ PRINT TAB(5); "-----------------------------------------"
│
│ phi = 3.14159: R = .082057: 'm^3.atm/kgmol/k
│
│ 'Spesifikasi reaktor
│ REM Bagian Tube
│ ID = 1.38 * .0254: OD = 1.65 * .0254: 'm │ Pt = 1.25 * OD: Cl = Pt - OD
│ Nt = 300: At = Nt * phi * ID ^ 2 / 4:
│
│ REM Bagian Shell
│ IDs = ((4 * .866 * Nt * Pt ^ 2) / phi) ^ .5: Bs = IDs * .25
│ ASs = IDs * Cl * Bs / Pt
│ Des = 4 * (.5 * .866 * Pt ^ 2 - (.5 * phi * (OD ^ 2) / 4)) / .5 / phi / OD
│
│ 'Kondisi Masuk Reaktor
│ TF = 473: Pf = 100: Tpf = 450
│ Tp0f = ((Tpf - 273) * 1.8) + 32: 'F
│
│ ' Katalisator
│ Dpar = .3969: pore = .4: Rhob = 200
│
│ 'Umpan Reaktor,kmol/jam
│ F10 = 74: 'hidrogen
│ F20 = 15: 'carbonmonoksida
│ F30 = 8: 'carbondioksida
│ F40 = 3: 'metana
│ F50 = 0: 'air
│ F60 = 0: 'metanol
│ Ftot0 = F10 + F20 + F30 + F40 + F50 + F60
│
│ 'Berat Molekul,kg/kmol
│ BM(1) = 2: BM(2) = 28: BM(3) = 44:
│ BM(4) = 28: BM(5) = 18: BM(6) = 32
│
│ 'Umpan Reaktor,kg/jam
│ W10 = F10 * BM(1): W20 = F20 * BM(2): W30 = F30 * BM(3):
│ W40 = F40 * BM(4): W50 = F50 * BM(5): W60 = F60 * BM(6)
│ Wtot0 = W10 + W20 + W30 + W40 + W50 + W60
│ Gt = Wtot0 / At: 'kg/jam/m^2
│
│ 'Pendingin
│ Wp = 12000: 'kg/jam
│ Gp = Wp / ASs: 'kg/jam/m^2
│
│ PRINT : PRINT
│ PRINT "Spesifikasi Reaktor Fixed Bed Multitubes"
│ PRINT "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
│ PRINT "Diameter Luar Tube :"; TAB(25); OD; TAB(36); "meter"
│ PRINT "Diameter Dalam Tube :"; TAB(25); ID; TAB(36); "meter"
│ PRINT "Triangular Pitch :"; TAB(25); Pt; TAB(36); "meter"
│ PRINT "Clearance :"; TAB(25); Cl; TAB(36); "meter"
│ PRINT "Diameter Dalam Shell :"; TAB(25); IDs; TAB(36); "meter"
│ PRINT "Jarak Buffle :"; TAB(25); Bs; TAB(36); "meter"
│ PRINT "Jumlah Tube :"; TAB(25); Nt
│
│ PRINT : PRINT "Kondisi Masuk reaktor"
│ PRINT "~~~~~~~~~~~~~~~~~~~~~~~~~~"
│ PRINT "Temperatur umpan ="; TF; "K"
│ PRINT "Temperatur Pendingin Masuk ="; Tpf; "K"
│ PRINT "Tekanan ="; Pf; "Atm": PRINT
│ INPUT "Tekan Enter......"; ENT$
│
│ PRINT STRING$(60, "=")
│ PRINT " Komponen Kec.Alir(kg/jam) Kec.Alir(kmol/jam"
│ PRINT STRING$(60, "-")
│ PRINT USING "Hidrogen = ####.#### "; W10;
│ PRINT USING " ###.####"; F10
│ PRINT USING "carbonmonoksida = ####.####"; W20;
│ PRINT USING " ###.####"; F20
│ PRINT USING "carbondioksida = ####.####"; W30;
│ PRINT USING " ###.####"; F30
│ PRINT USING "metana = ####.####"; W40;
│ PRINT USING " ###.####"; F40
│ PRINT USING "air = ####.####"; W50;
│ PRINT USING " ###.####"; F50
│ PRINT USING "metanol = ####.####"; W60;
│ PRINT USING " ###.####"; F60
│ PRINT STRING$(60, "-")
│ PRINT USING "Umpan Total = ####.####"; Wtot0;
│ PRINT USING " ###.####"; Ftot0
│ PRINT STRING$(60, "=")
│ INPUT "Tekan enter..."; ENT$
│
│ 'Fraksi Mol Gas Awal
│ Ym10 = F10 / Ftot0: Ym20 = F20 / Ftot0: Ym30 = F30 / Ftot0:
│ Ym40 = F40 / Ftot0: Ym50 = F50 / Ftot0: Ym60 = F60 / Ftot0
│ Ymcamp0 = Ym10 + Ym20 + Ym30 + Ym40 + Ym50 + Ym60
│
│ 'Berat campuran Gas Awal,kg/kmol
│ BMcampa = Ym10 * BM(1) + Ym20 * BM(2) + Ym30 * BM(3)
│ BMcamp0 = BMcampa + Ym40 * BM(4) + Ym50 * BM(5) + Ym60 * BM(6)
│
│ 'Densitas Campuran Gas Awal
│ Rhocamp0 = Pf * BMcamp0 / R / TF
│
│ 'Viskositas Campuran Gas Awal,kg/m/jam
│ atasa = 0: bawaha = 0
│
│ Myu0(1) = .655: Myu0(2) = .00798: Myu0(3) = .00773: Myu0(4) = .0165: Myu0(5)
│ atasa = atasa + Ym10 * Myu0(1) * BM(1) ^ .5 + Ym20 * Myu0(2) * BM(2) ^ .5
│ atasa = atasa + Ym30 * Myu0(3) * BM(3) ^ .5 + Ym40 * Myu0(4) * BM(4) ^ .5
│ atasa = atasa + Ym50 * Myu0(5) * BM(5) ^ .5 + Ym60 * Myu0(6) * BM(6) ^ .5
│
│ bawaha = bawaha + Ym10 * BM(1) ^ .5 + Ym20 * BM(2) ^ .5 + Ym30 * BM(3) ^ .5
│ bawaha = bawaha + Ym40 * BM(4) ^ .5 + Ym50 * BM(5) ^ .5 + Ym60 * BM(6) ^ .5
│ Myucamp0 = atasa / bawaha
│
│ PRINT : PRINT
│ PRINT "BM Campuran ="; TAB(15); BMcamp0; TAB(26); "kg/kmol"
│ PRINT "Densitas ="; TAB(15); Rhocamp0; TAB(26); "kg/m^3"
│ PRINT "Viskositas ="; TAB(15); Myucamp0; TAB(26); "kg/m/jam"
│ PRINT : PRINT
│ PRINT STRING$(61, "=")
│ PRINT " z(m) x1 x2 T(K) Tp(K) P(atm)"
│ PRINT STRING$(61, "-")
│ a$ = "##.### #.#### #.#### ###.### ###.### ###.####"
│ z0 = 0: x10 = 0: x20 = 0: T0 = TF: Tp0 = Tpf: P0 = Pf: dz = .05
│
│1000
│z = z0: x1 = x10: x2 = x20: T = T0: Tpf = Tp0: Pf = Pf0
│GOSUB 2000
│iprint = I / 2
│IF iprint = INT(iprint) THEN PRINT USING a$; z; x1; x2; T; Tp; P ↑
│
│ A1 = dx1dz * dz: B1 = dx2dz * dz
│ C1 = dtdz * dz: D1 = dtpdz * dz: E1 = dpdz * dz
│ z = z0 + dz / 2: x1 = x10 + A1 / 2: x2 = x20 + B1 / 2
│ T = T0 + C1 / 2: Tp = Tp0 + D1 / 2: P = P0 + E1 / 2
│ GOSUB 2000
│
│ A2 = dx1dz * dz: B2 = dx2dz * dz
│ C2 = dtdz * dz: D2 = dtpdz * dz: E2 = dpdz * dz
│ z = z0 + dz / 2: x1 = x10 + A2 / 2: x2 = x20 + B2 / 2
│ T = T0 + C2 / 2: Tp = Tp0 + D2 / 2: P = P0 + E2 / 2
│ GOSUB 2000
│
│ A3 = dx1dz * dz: B3 = dx2dz * dz
│ C3 = dtdz * dz: D3 = dtpdz * dz: E3 = dpdz * dz
│ z = z0 + dz: x1 = x10 + A3: x2 = x20 + B3
│ T = T0 + C3: Tp = Tp0 + D3: P = P0 + E3
│ GOSUB 2000
│
│ A4 = dx1dz * dz: B4 = dx2dz * dz
│ C4 = dtdz * dz: D4 = dtpdz * dz: E4 = dpdz * dz
│ z = z0 + dz
│
│ x1 = x10 + ((A1 + 2 * A2 + 2 * A3 + A4) / 6)
│ x2 = x20 + ((B1 + 2 * B2 + 2 * B3 + B4) / 6)
│ T = T0 + ((C1 + 2 * C2 + 2 * C3 + C4) / 6)
│ Tp = Tp0 + ((D1 + 2 * D2 + 2 * D3 + D4) / 6)
│ P = P0 + ((E1 + 2 * E2 + 2 * E3 + E4) / 6): I = I + 1
│ IF x1 > .99 THEN 1500
│ IF x2 > 1! THEN 1500
│ z0 = z: x10 = x1: x20 = x2
│ T0 = T: Tp0 = Tp: P0 = P
│ GOTO 1000
│
│1500
│ z = z0: x1 = x10: x2 = x20: T = T0: Tp = Tp0: P = P0
│ PRINT USING a$; z; x1; x2; T; Tp; P
│ PRINT STRING$(61, "=")
│ INPUT "Tekan enter....."; ENT$
│ PRINT : PRINT
│ PRINT "Kondisi Setelah Keluar reaktor:"
│ PRINT "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
│ PRINT USING "suhu gas MASUK reaktor = ###.#### K"; T
│ PRINT USING "Suhu pendingin masuk reaktor = ###.#### K"; Tp
│ PRINT USING "Konversi reaksi keluar reaktor = #.####"; x1
│ PRINT USING "Konversi reaksi keluar reaktor = #.####"; x2
│ PRINT USING "Pressure drop dalam tube side = ##.#### psi"; (Pf - P) * 1
│ PRINT USING "Pressure drop dalam shell side = ##.#### psi"; delps
│ INPUT "Tekan enter...."; ENT$
│ PRINT STRING$(60, "=")
│ PRINT "Komponen Kec.Alir,kmol/jam Kec.Alir,kg/jam"
│ PRINT USING "hidrogen = ###.####"; F1;
│ PRINT USING " ####.####"; W1
│ PRINT USING "carbonmonoksida = ###.####"; F2;
│ PRINT USING " ####.####"; W2
│ PRINT USING "carbondioksida = ###.####"; F3;
│ PRINT USING " ####.####"; W3
│ PRINT USING "metana = ###.####"; F4;
│ PRINT USING " ####.####"; W4
│ PRINT USING "air = ###.####"; F5;
│ PRINT USING " ####.####"; W5
│ PRINT USING "metanol = ###.####"; F6;
│ PRINT USING " ####.####"; W6
│
│ PRINT STRING$(60, "-")
│ PRINT USING "Hasil Total = ###.####"; Ftot;
│ PRINT USING " ####.####"; Wtot
│ PRINT STRING$(60, "=")
│ INPUT "Tekan enter....."; ENT$
│ PRINT : PRINT
│ PRINT "BM campuran gas ="; BMcamp; "kg/kmol"
│ PRINT "Densitas campuran gas ="; rhocamp; "kg/m^3"
│ PRINT "Viskositas Campuran gas ="; Myucamp; "kg/m/jam"
│ PRINT "Kapasitas panas campuran gas ="; cpgcamp; "kkal/kmol/K"
│ END
│
│2000
│ 'Komposisi gas pada saat konversi x
│ F1 = 49.916: W1 = F1 * BM(1)
│ F2 = 5.91: W2 = F2 * BM(2)
│ F3 = 6.032: W3 = F3 * BM(3)
│ F4 = 3: W4 = F4 * BM(4)
│ F5 = 1.968: W5 = F5 * BM(5)
│ F6 = 11.058: W6 = F6 * BM(6)
│ Ftot = F1 + F2 + F3 + F4 + F5 + F6
│ Wtot = W1 + W2 + W3 + W4 + W5 + W6
│ Ym1 = F1 / Ftot: Ym2 = F2 / Ftot: Ym3 = F3 / Ftot:
│ Ym4 = F4 / Ftot: Ym5 = F5 / Ftot: Ym6 = F6 / Ftot
│
│ 'Berat molekul dan Densitas gas campuran
│ BMcamp1 = Ym10 * BM(1) + Ym20 * BM(2) + Ym30 * BM(3)
│ BMcamp = BMcamp1 + Ym40 * BM(4) + Ym50 * BM(5) + Ym60 * BM(6)
│ rhocamp = P0 * BMcamp / R / T
│
│ 'Viskositas gas,kg/m/jam
│ atas1 = 0: bawah1 = 0
│ Myu0(1) = .655: Myu0(2) = .00798: Myu0(3) = .00773: Myu0(4) = .0165:
│ Myu0(5) = .0699: Myu0(6) = .0687
│ atas1 = atas1 + Ym1 * Myu0(1) * BM(1) ^ .5 + Ym2 * Myu0(2) * BM(2) ^ .5
│ atas1 = atas1 + Ym3 * Myu0(3) * BM(3) ^ .5 + Ym4 * Myu0(4) * BM(4) ^ .5
│ atas1 = atas1 + Ym5 * Myu0(5) * BM(5) ^ .5 + Ym6 * Myu0(6) * BM(6) ^ .5
│
│ bawah1 = bawah1 + Ym1 * BM(1) ^ .5 + Ym2 * BM(2) ^ .5 + Ym3 * BM(3) ^ .5
│ bawah1 = bawah1 + Ym4 * BM(4) ^ .5 + Ym5 * BM(5) ^ .5 + Ym6 * BM(6) ^ .5
│ Myucamp = atas1 / bawah1
│
│ 'Kapasitas panas gas,kkal/kmol/K
│ cpgcamp = 0: cpg2camp = 0: fcp = 0
│ cpg(1) = .2389 * (27.143 + .009273 * TF - .0000138 * (TF ^ 2) +
│ 7.645E-09 * (TF ^ 3))
│ cpg(2) = .2389 * (30.869 - .01285 * TF + 2.789E-05 * (TF ^ 2) -
│ 1.271E-08 * (TF ^ 3))
│ cpg(3) = .2389 * (19.795 + 7.343 * TF - 5.601E-05 * (TF ^ 2) +
│ 1.715E-09 * (TF ^ 3))
│ cpg(4) = .2389 * (19.251 + .05212 * TF + 1.197E-05 * (TF ^ 2) -
│ 1.131E-08 * (TF ^ 3))
│ cpg(5) = .2389 * (32.243 + .001923 * TF + 1.055E-05 * (TF ^ 2) -
│ 3.596E-09 * (TF ^ 3))
│ cpg(6) = .2389 * (21.12 + .07092 * TF + 2.587E-05 * (TF ^ 2) -
│ 2.851E-08 * (TF ^ 3))
│ nidji = Ym1 * cpg(1) + Ym2 * cpg(2) + Ym3 * cpg(3)
│ cpgcamp = nidji + Ym4 * cpg(4) + Ym5 * cpg(5) + Ym6 * cpg(6)
│ cpg2camp = cpg2camp + Ym1 * cpg(1) / BM(1) + Ym2 * cpg(2) / BM(2) +
│ Ym3 * cpg(3) / BM(3)
│ cpg2camp = cpg2camp + Ym4 * cpg(4) / BM(4) + Ym5 * cpg(5) / BM(5) +
│ Ym6 * cpg(6) / BM(6)
│ fcp = F1 * cpg(1) + F2 * cpg(2) + F3 * cpg(3) + F4 * cpg(4) +
│ F5 * cpg(5) + F6 * cpg(6)
│
│
│
│ 'Konduktivitas panas gas,kkal/jam/m/K
│ atas2 = 0: bawah2 = 0
│ k(1) = .2389 * Myu0(1) * ((cpg(1) / .2389 / BM(1)) + 10.4 / BM(1))
│ k(2) = .2389 * Myu0(2) * ((cpg(2) / .2389 / BM(2)) + 10.4 / BM(2))
│ k(3) = .2389 * Myu0(3) * ((cpg(3) / .2389 / BM(3)) + 10.4 / BM(3))
│ k(4) = .2389 * Myu0(4) * ((cpg(4) / .2389 / BM(4)) + 10.4 / BM(4))
│ k(5) = .2389 * Myu0(5) * ((cpg(5) / .2389 / BM(5)) + 10.4 / BM(5))
│ k(6) = .2389 * Myu0(6) * ((cpg(6) / .2389 / BM(6)) + 10.4 / BM(6))
│ atas2 = atas2 + k(1) * Ym1 * BM(1) ^ (1 / 2) + k(2) * Ym2 * BM(2) ^ (1 / 2)
│ atas2 = atas2 + k(3) * Ym3 * BM(3) ^ (1 / 2) + k(4) * Ym4 * BM(4) ^ (1 / 2)
│ atas2 = atas2 + k(5) * Ym5 * BM(5) ^ (1 / 2) + k(6) * Ym6 * BM(6) ^ (1 / 2)
│
│ bawah2 = bawah2 + Ym1 * BM(1) ^ (1 / 3) + Ym2 * BM(2) ^ (1 / 3) +
│ Ym3 * BM(3) ^ (1 / 3)
│ bawah2 = bawah2 + Ym4 * BM(4) ^ (1 / 3) + Ym5 * BM(5) ^ (1 / 3) + │Ym6 * BM(6) ^ (1 / 3)
│ kcamp = atas2 / bawah2
│ 'Viskositas,kapasitaspanas & konduktivitas pendingin,kg/m/jam
│ Myup = (35.5898 - .04212 * (Tp0f)) * 100 / 1000: 'kg/jam/m
│ cpp = (.11152 + .0003402# * Tp0f) * 100 / 1000: 'kkal/kg/K
│ kp = (1.512 - .0010387# * Tp0f) * 100 / 1000: 'kkal/jam/m/K
│ 'Bilangan reynold gas dan pendingin
│ Ret = Dpar * Gt / Myucamp: Prt = cpg2camp * Myucamp / kcamp
│ Res = Des * Gp / Myup: Prs = cpp * Myup / kp
│
│ 'koefisien transfer panas,kkal/jam/m^2/K
│ Hi = .27 * 7.8 * (kcamp / ID) * (ID * Gt / Myucamp) ^ .8 * Prt ^ (1 / 3)
│ Ho = .36 * (kp / Des) * Res ^ .55 * Prs ^ (1 / 3)
│ Hio = Hi * ID / OD
│ Uc = Hio * Ho / (Hio + Ho)
│ Rd = .0015: 'jam.m^2.K/kkal (=0.0035 jam.ft^2.F/Btu)
│ Ud = Uc / (1 + Rd * Uc)
│
│ 'data integrasi cp
│ T1 = TF - 298: T2 = (TF ^ 2 - 298 ^ 2) / 2
│
│ T3 = (TF ^ 3 - 298 ^ 3) / 3: T4 = (TF ^ 4 - 298 ^ 4) / 4
│ Icpg(1) = .2389 * (27.143 + .009273 * TF - .0000138 * (TF ^ 2) +
│ 7.645E-09 * (TF ^ 3))
│ Icpg(2) = .2389 * (30.869 - .01285 * TF + 2.789E-05 * (TF ^ 2) -
│ 1.271E-08 * (TF ^ 3))
│ Icpg(3) = .2389 * (19.795 + 7.343 * TF - 5.601E-05 * (TF ^ 2) +
│ 1.715E-09 * (TF ^ 3))
│ Icpg(4) = .2389 * (19.251 + .05212 * TF + 1.197E-05 * (TF ^ 2) -
│ 1.131E-08 * (TF ^ 3))
│ Icpg(5) = .2389 * (32.243 + .001923 * TF + 1.055E-05 * (TF ^ 2) -
│ 3.596E-09 * (TF ^ 3))
│ Icpg(6) = .2389 * (21.12 + .07092 * TF + 2.587E-05 * (TF ^ 2) -
│ 2.851E-08 * (TF ^ 3))
│
│ 'Panas reaksi
│ HR1 = -21.66 - 15.287 * (T - 298)
│ HR1 = HR1 + (1 / 2) * (7.79 * 10 ^ -3) * (T ^ 2 - 298 ^ 2)
│ HR1 = HR1 + (1 / 3) * (2.0376 * 10 ^ -6) * (T ^ 3 - 298 ^ 3)
│ HR1 = HR1 + (1 / 4) * (-1.8565 * 10 ^ -9) * (T ^ 4 - 298 ^ 4)
│
│ HR2 = -11.83 - 11.424 * (T - 298)
│ HR2 = HR2 + (1 / 2) * (3.39275 * 10 ^ -3) * (T ^ 2 - 298 ^ 2)
│ HR2 = HR2 + (1 / 3) * (1.0658 * 10 ^ -5) * (T ^ 3 - 298 ^ 3)
│ HR2 = HR2 + (1 / 4) * (-4.31125 * 10 ^ -9) * (T ^ 4 - 298 ^ 4)
│
│ HR = HR1 + HR2
│
│ 'Konstanta kecepatan reaksi,kmol.atm^2/kgkat/jam
│ 'nilai k didapat dari buku RK SINNOT
│ k1 = .7
│ k2 = .265
│
│ 'Kecepatan reaksi,kmol/kgkat/jam
│ Rtetap = .08206
│ CA0 = F20 / Ftot0 * 100 / Rtetap / TF
│ CB0 = F30 / Ftot0 * 100 / Rtetap / TF
│
│ rc = k1 * CA0 * (1 - x1)
│
│ rc2 = k2 * CB0 * (1 - x2)
│
│ 'Persamaan diferensial untuk x1,x2,T,Tp,P
│ dx1dz = Nt * rc * Rhob * phi * ID ^ 2 / 4 / F20
│ dx2dz = Nt * rc2 * Rhob * phi * ID ^ 2 / 4 / F30
│ dt1dz = ((-HR1 * F20 * dx1dz) + (-HR2 * F30 * dx2dz))
│ dtdz = (dt1dz - phi * Ud * OD * Nt * (T - TF)) / fcp
│ dtpdz = (phi * Ud * OD * Nt * (TF - T)) / (Wp * cpp)
│ dpdz = -1.02E-06 * ((150 * (1 - pore) / Ret) + 1.75) * (1 - pore)
│ dpdz = dpdz * (Gt / 36000) ^ 2 / pore ^ 3 / Dpar / (rhocamp / 1000) * dz
│
│ 'Pressure drop dalam shell
│ Gps = .2048 * Gp: 'lb/ft^2/jam
│ IDss = IDs / .3048: Bss = Bs / .3048: 'ft
│ L = 1.1 * z / .3048: Dess = Des / .3048: 'ft
│ fs = .003
│ delps = fs * Gps ^ 2 * IDss * (12 * L / Bss) / 5.22E+10 / Dess
│ delps = delps / 14.7: 'atm
│ RETURN
Tekan Fn +F5 untuk melihat hasil perhitungan reaktor fixed bed multi tube. Yang akan di tampilkan seperti di bawah ini
=========================================
Perhitungan Reaktor Fixed Bed Multitube
Oleh : Herry Widyawarman
NIM :********
-----------------------------------------
Spesifikasi Reaktor Fixed Bed Multitubes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Diameter Luar Tube : .04191 meter
Diameter Dalam Tube : .035052 meter
Triangular Pitch : .0523875 meter
Clearance : .0104775 meter
Diameter Dalam Shell : .9528016 meter
Jarak Buffle : .2382004 meter
Jumlah Tube : 300
Kondisi Masuk reaktor
~~~~~~~~~~~~~~~~~~~~~~~~~~
Temperatur umpan = 473 K
Temperatur Pendingin Masuk = 450 K
Tekanan = 100 Atm
Tekan Enter......?
============================================================
Komponen Kec.Alir(kg/jam) Kec.Alir(kmol/jam
------------------------------------------------------------
Hidrogen = 148.0000 74.0000
carbonmonoksida = 420.0000 15.0000
carbondioksida = 352.0000 8.0000
metana = 84.0000 3.0000
air = 0.0000 0.0000
metanol = 0.0000 0.0000
------------------------------------------------------------
Umpan Total = 1004.0000 100.0000
============================================================
Tekan enter...?
-------------------------------------------------------------
0.000 0.0000 0.0000 473.000 0.000 0.0000
0.100 0.0992 0.0388 473.634 449.615 100.0000
0.200 0.1885 0.0760 474.177 448.536 100.0000
0.300 0.2689 0.1118 474.637 446.865 100.0000
0.400 0.3414 0.1463 475.025 444.694 100.0000
0.500 0.4067 0.1793 475.348 442.102 100.0000
0.600 0.4655 0.2111 475.615 439.163 100.0000
0.700 0.5185 0.2417 475.831 435.939 100.0000
0.800 0.5663 0.2711 476.004 432.485 100.0000
0.900 0.6093 0.2994 476.137 428.852 100.0000
1.000 0.6480 0.3265 476.237 425.080 100.0000
1.100 0.6829 0.3526 476.307 421.209 100.0000
1.200 0.7144 0.3777 476.352 417.270 100.0000
1.300 0.7427 0.4018 476.374 413.291 100.0000
1.400 0.7682 0.4250 476.378 409.298 100.0000
1.500 0.7912 0.4473 476.364 405.311 100.0000
1.600 0.8119 0.4687 476.337 401.348 100.0000
1.700 0.8305 0.4893 476.298 397.424 100.0000
1.800 0.8473 0.5091 476.249 393.553 100.0000
1.900 0.8625 0.5281 476.192 389.745 100.0000
2.000 0.8761 0.5464 476.127 386.009 100.0000
2.100 0.8884 0.5640 476.057 382.352 100.0000
2.200 0.8995 0.5809 475.983 378.781 100.0000
2.300 0.9094 0.5971 475.905 375.300 100.0000
2.400 0.9184 0.6128 475.825 371.912 100.0000
2.500 0.9265 0.6278 475.743 368.620 100.0000
2.600 0.9338 0.6422 475.660 365.426 100.0000
2.700 0.9404 0.6561 475.576 362.331 100.0000
2.800 0.9463 0.6694 475.492 359.335 100.0000
2.900 0.9516 0.6822 475.408 356.438 100.0000
3.000 0.9564 0.6945 475.325 353.639 100.0000
3.100 0.9607 0.7064 475.243 350.938 100.0000
3.200 0.9646 0.7177 475.163 348.334 100.0000
3.300 0.9681 0.7287 475.083 345.824 100.0000
3.400 0.9713 0.7392 475.006 343.406 100.0000
3.500 0.9741 0.7493 474.930 341.080 100.0000
3.600 0.9767 0.7590 474.856 338.842 100.0000
3.700 0.9790 0.7684 474.784 336.691 100.0000
3.800 0.9811 0.7773 474.713 334.624 100.0000
3.900 0.9830 0.7860 474.645 332.638 100.0000
4.000 0.9847 0.7943 474.579 330.732 100.0000
4.100 0.9862 0.8022 474.516 328.903 100.0000
4.200 0.9875 0.8099 474.454 327.147 100.0000
4.300 0.9888 0.8173 474.394 325.464 100.0000
4.400 0.9899 0.8244 474.337 323.850 100.0000
4.400 0.9899 0.8244 474.337 323.850 100.0000
=============================================================
Tekan enter.....?
Kondisi Setelah Keluar reaktor:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
suhu gas MASUK reaktor = 474.3366 K
Suhu pendingin masuk reaktor = 323.8499 K
Konversi reaksi keluar reaktor = 0.9899
Konversi reaksi keluar reaktor = 0.8244
Pressure drop dalam tube side = %-1470.0000 psi
Pressure drop dalam shell side = 0.0889 psi
Tekan enter....?
============================================================
Komponen Kec.Alir,kmol/jam Kec.Alir,kg/jam
hidrogen = 49.9160 99.8320
carbonmonoksida = 5.9100 165.4800
carbondioksida = 6.0320 265.4080
metana = 3.0000 84.0000
air = 1.9680 35.4240
metanol = 11.0580 353.8560
------------------------------------------------------------
Hasil Total = 77.8840 1004.0000
============================================================
Tekan enter.....?
BM campuran gas = 10.04 kg/kmol
Densitas campuran gas = 25.79628 kg/m^3
Viskositas Campuran gas = .2271534 kg/m/jam
Kapasitas panas campuran gas = 71.99585 kkal/kmol/K
Press any key to continue
Perhitungan reaktor fix bed multi tube, perhitungan fixed bed multi tube, perhitungan reaktor fixed bed multi tube menggunakan quic basic, cara mengitung reaktor dengan program quic basic.